
Model-Based Optical Metrology in R
M.o.R.

Mark-Alexander Henn1 and Nien Fan Zhang2

1Engineering Physics Division, National Institute of Standards and Technology,
Gaithersburg, MD 20899, United States of America

2Statistical Engineering Division, National Institute of Standards and Technology,
Gaithersburg, MD 20899, United States of America

April 5, 2018

Abstract

Reliable optical critical dimension (OCD) metrology in the regime where
the inspection wavelength λ is much larger than the critical dimensions
(CDs) of the measurand is only possible using a model-based approach.
Due to the complexity of the models involved, that often require solving
Maxwell’s equations, many applications use a library based look-up ap-
proach. Here, the best experiment-to-theory fit is found by comparing the
measurement data to a library consisting of pre-calculated simulations. One
problem with this approach is that it makes the accuracy of the solution de-
pendent on the refinement of the grid. Interpolating between library values
requires a uniform grid in most cases, and can also be very time-consuming.

We present an approach based on radial basis functions that is fast, ac-
curate and most importantly works on arbitrary grids. The method is im-
plemented in a application based on the programming language R, that
additionally allows for Bayesian data analysis, and provides multiple diag-
nostics.1

1Certain commercial materials are identified in this talk in order to specify the experimental
procedure adequately. Such identification is not intended to imply recommendation or endorsement
by NIST, nor is it intended to imply that the materials are necessarily the best available for the
purpose.

1

1 Introduction

Generally speaking, regression analysis is a statistical process for estimating the
relationships among variables, separated into independent and dependent vari-
ables. Note, that we restrict ourselves to scalar dependent variables, however
we allow the independent variable to be vector-valued. In the following the
independent variables will be denoted by x, and the dependent variables will
be denoted by y. Based on a limited number of pairs (xi, yi), i = 1, . . . , k, re-
gression is used to determine the functional relationship between independent
and dependent variables, and to make predictions about observations of y for
arbitrary values of x.

In many cases the functions that describe this relationship, also called model
functions, are limited to a specific class that can be described by a few parame-
ters, given as the components of a vector p. In a simple case where both x and y
are scalar one might only consider linear functions, that is functions of the form

f(x,p) = p1x+ p2 (1)

in the regression. The regression problem then amounts to finding the model
function’s parameters p1, and p2 such that the model’s predicted values are close
to the actual observations.

Figure 1: Example of regression using a linear function (cf. Eq. (1)), observa-
tions are marked blue, the best fit line is marked red.

One measure for closeness is the norm of the difference vector, also called
the sum of squared errors of prediction (SSE)

SSE =

k∑
i=1

|f(xi,p)− yi|2. (2)

2

Note, that the minimum of the SSE, called least-squares value, will usually
not be equal to zero due to inaccuracies in the model function, or due to the
presence of measurement errors, i.e. the values yi are noisy realizations of the
model function at xi. If one has additional knowledge about those measurement
errors, e.g. if one knows the variances σ2

i of each of the measurements yi one
can use this knowledge to weigh the different measurements accordingly, hence
limiting the influence of observations that are expected to have a large error.
This approach leads to the function

χ2(p) =

k∑
i=1

1

σ2
i

‖f(xi,p)− yi‖2, (3)

which is also called the weighted χ2 (chi-square) function. We can also write
it in a more general way as:

χ2(p) = (f(x,p)− y)ᵀV−1(f(x,p)− y), (4)

with

f(x,p) = (f(x1,p), f(x2,p), . . . , f(xk,p))
ᵀ, y = (y1, y2, · · · , yk)ᵀ (5)

and
V−1 ∈ Rk×k. (6)

The matrix V−1 is either a pure diagonal matrix, such that

V−1 =

(
δij

1

σ2
i

)
∈ Rk×k

or it might contain non-zero off-diagonal elements if one also has information
about the correlations between the different measurements.

In the following we will use regression to solve inverse problems[13, 5]. In
an inverse problem one is given a set of observations and asked to determine
the causal factors that produced them. In our terminology the observations are
the yi and the causal factors are both the xi and the parameter vector p. How-
ever, the xi represent the known measurement conditions used to obtain the
measurements yi, while the vector p represents the adjustable parameters of
the measurand[16]. For a simple scattering problem, the yi would be the mea-
sured intensities at different locations in space given in spherical coordinates
(ri, θi, φi) and given wavelength λ such that xi = (ri, θi, φi, λ). The vector p
contains information about the scatterer that is unknown such as its radius if it
is assumed to be spherical or the material it is made of.

Once we establish x and p we minimize the function in Eq. (4) and call the
values of p that minimize the χ2 function the parametric estimates. There
might be several different values for p that yield equally good, i.e. small, values
for the χ2 function. In this case we call the inverse problem ill-posed. One
way to make the inverse problem less ill-posed is to incorporate knowledge one

3

has about p from other experiments and add a penalty term to the χ2 function.
For example one could penalize values of p that differ too much from a reason-
able estimate p̂ by adding the so-called regularization term λ ‖p − p̂‖, with
λ ∈ R+ to the χ2 function. This is called regularization, or Tikhonov regu-
larization[14], the parameter λ is called the regularization parameter. If we
have information about the distribution of p in terms of its mean and covari-
ance we can change the penalty term accordingly, this is called the Bayesian
approach to regression, see e.g. [16, 17, 6]. M.o.R. is an application that has
been designed to solve inverse problems using both regular regression and the
Bayesian approach. Details about the underlying theory are provided in Section
2, a guide on how to use the application is given in Section 3.

4

2 Theoretical Background

In this section we will collect some basic facts about the Bayesian approach
to regression and about interpolation that will help to understand how M.o.R.
works.

2.1 The Inverse Problem

Generally speaking an inverse problem is the task of calculating from a set of
observations the causal factors that produced them. Several techniques can be
applied to solve inverse problems [13, 7], the approach used in M.o.R is based
on setting up a regression problem, in the following sense.

1 The Inverse Problem of Model-Based Metrology:
Given a vector of measurement data y ∈ Rn, a so-called model function

f : Rm → Rn, p 7→ f (p) , (7)

that maps the parameters p that we want to determine to an approximation of
the measurement data, furthermore a symmetric, positive definite matrix V ∈
Rn×n, and (if available) prior information about p in terms of a mean µpri

and a covariance matrix Σpri, find the best fit, i.e. determine the parameter
vector p̂ that minimizes the objective function or loss function

χ2 (p) = (f (p)− y)
ᵀ

V−1 (f (p)− y)︸ ︷︷ ︸
fit to measurement data

+
(
p− µpri

)ᵀ
Σ−1pri

(
p− µpri

)︸ ︷︷ ︸
penalty term (prior knowledge)

, (8)

written compactly as
p̂ = argmin

[
χ2 (p)

]
. (9)

The above problem can be solved by applying a suitable optimization algo-
rithm. M.o.R. uses a combination of global and local optimization algorithms[4,
15]. The local optimization algorithm makes use of the gradient of the objective
function, which is given by

∇χ2 = 2
(
Jᵀ

f V−1 (f (p)− y) + Σ−1pri

(
p− µpri

))
, (10)

with Jf being the Jacobian of the model function

Jf =

(
∂fi
∂pj

)
∈ Rn×m. (11)

Once we have determined the best fit, we can also estimate the uncertainties
in p̂ by calculating the covariance matrix using

Σ =
(
Jᵀ

f V−1Jf

)−1
, (12)

or
Σ =

(
Jᵀ

f V−1Jf + Σ−1pri

)−1
. (13)

if prior information is available.

5

2.2 Interpolation

Even though Problem 1 is easy to formulate one has to deal with a lot of chal-
lenges in real life. The most common lies in the fact that evaluating the model
function might be a very time-consuming task in many cases. We therefore try
to avoid evaluating it by interpolating on a grid of already calculated values.

2 The Interpolation Problem:
Assume that we have evaluated the model function f at k different pointsa

pi = (pi1, pi2, . . . , pim), i = 1, . . . , k with

Π =

 p1

...
pk

 =

 p11 · · · p1m
...

. . .
...

pk1 · · · pkm

 ∈ Rk×m, (14)

and the corresponding function values f (pi) with

f (Π) = Φ =

 f (p1)
ᵀ

...
f (pk)

ᵀ

 =

 f1 (p1) · · · fn (p1)
...

. . .
...

f1 (pk) · · · fn (pk)

 ∈ Rk×n. (15)

The interpolation problem then amounts to find an approximation f̃ to the
function f such that

f̃ (p,Π,Φ) ≈ f (p) . (16)

aNote, that we use the term points in the topological sense.

Many interpolation algorithms assume that the points pi form a regular grid,
that is that they are equally spaced. However, sometimes regular grids are not
available, and therefore interpolation techniques such as splines cannot be ap-
plied, that is why we use the more flexible radial basis function (RBF) approach
for the interpolation[9], which is based on the following reasoning.

Assume we have a set of functions ρi : Rm → R, i = 1, . . . , N , such that for
all j ∈ {1, · · · , n}, we can approximate the j-th component of f , i.e. the scalar
function fj (p) by

fj (p) ≈
N∑
i=1

ajiρi (p) . (17)

In the RBF approach we use specific functions, that depend only on the distance
of the parameter vector p from the different grid points pi, and an additional
hyperparameter r as

ρi (p, r) = ρ (‖p− pi‖, r) , i = 1, . . . , k. (18)

We will later see how to adjust the hyperparameter r.
M.o.R. allows to use three different types of radial basis functions:

6

(i) Gaussian: ρ (p, r) = exp(−(‖p‖2 + r2))

(ii) Multiquadratic: ρ (p, r) =
√
‖p‖2 + r2

(iii) Inverse Multiquadratic: ρ (p, r) = 1√
‖p‖2+r2

Since the interpolation function should be exact if evaluated at the grid
points, i.e. for all i = 1, . . . , k

fj(pi)
!
=

k∑
l=1

ajlρl (pi) , (19)

we can determine the above series’ coefficients for each of the n individual
components of f by solving the following matrix equation:

fj = P0 · aj ⇔ aj = P−10 · fj , j = 1, · · · , n (20)

with fj = (fj (p1) , . . . , fj (pk))
ᵀ ∈ Rn, aj = (aj1, . . . , ajk)

ᵀ ∈ Rk, and

P0 =

 ρ1 (p1) · · · ρk (p1)
...

. . .
...

ρ1 (pk) · · · ρk (pk)

 ∈ Rk×k. (21)

Equation (20) needs to be solved for each fj , such that we end up with a matrix
consisting of the n coefficient vectors

A = (a1, · · · ,an)ᵀ ∈ Rn×k. (22)

Using A we can calculate the approximation to the model function for an arbi-
trary parameter vector p by

f̃ (p) = A ·P (p) , with P (p) = (ρ1 (p) , . . . , ρk (p))
ᵀ ∈ Rk. (23)

We can also easily calculate the Jacobian of f̃

Jf̃ =

(
∂f̃i
∂pj

)
∈ Rn×m (24)

as

Jf̃ =

∂
∂p1

(∑k
i=1 a1iρi (p)

)
· · · ∂

∂pm

(∑k
i=1 a1iρi (p)

)
...

. . .
...

∂
∂p1

(∑k
i=1 aniρi (p)

)
· · · ∂

∂pm

(∑k
i=1 aniρi (p)

)

=

∑k
i=1 a1i

(
∂ρi
∂p1

(p)
)
· · ·

∑k
i=1 a1i

(
∂ρi
∂pm

(p)
)

...
. . .

...∑k
i=1 ani

(
∂ρi
∂p1

(p)
)
· · ·

∑k
i=1 ani

(
∂ρi
∂pm

(p)
)
 .

(25)

7

Which is equivalent to
Jf̃ = A · Jρ, (26)

with A ∈ Rn×k the coefficient matrix defined in Eq. (22), and

Jρ =

(
∂ρi
∂pj

)
∈ Rk×m. (27)

The partial derivatives ∂ρi
∂pj

are given by

∂ρi
∂pj

=

(
∂

∂pj
‖p− pi‖

)
ρ′(‖p− pi‖) =

(pj − pij)
‖p− pi‖

ρ′(‖p− pi‖) (28)

and therefore

Jρ =

ρ′(‖p−p1‖)
‖p−p1‖ · · · 0

...
. . .

...
0 · · · ρ′(‖p−pk‖)

‖p−pk‖

︸ ︷︷ ︸

P′(p)

 (p1 − p11) · · · (pm − p1m)
...

. . .
...

(p1 − pk1) · · · (pm − pkm)

︸ ︷︷ ︸

∆∈Rk×m

,

(29)
since the derivative of the radial basis functions is usually given analytically,
calculating the derivative takes about the same time as evaluating the radial
basis functions.

Putting all of this together we have

Jf̃ = A ·P′ (p) ·∆︸ ︷︷ ︸
Jρ

, (30)

and

∇χ2 = 2
(
Jᵀ

f̃
V−1

(
f̃ (p)− y

)
+ Σ−1pri

(
p− µpri

))
= 2

([
A ·P′ (p) ·∆

]ᵀ
V−1

(
f̃ (p)− y

)
+ Σ−1pri

(
p− µpri

)) (31)

Several measures can be taken to speed up the computations

• Use the symmetry of the radial basis functions to reduce computations to
populate P0

• Since each of the n components of f is assumed to be independent, use
parallelization to solve the n equations Eq. (20)

8

We can finally formulate the problem we want to solve.

3 The Inverse Problem Using Interpolation:
Given:

• y ∈ Rn, a vector of measurement data

• Π ∈ Rk×m, a matrix consisting of k grid points pi ∈ Rm

• Φ ∈ Rk×n, a matrix with corresponding function values f (pi) ∈ Rn

• V ∈ Rn×n, a symmetric, positive definite matrix

• µpri ∈ Rm, a vector containing an estimate for p

• Σpri ∈ Rm×m, a matrix containing the uncertainties for p

we solve for:

p̂ = argmin
[(

f̃ (p,Π,Φ)− y
)ᵀ

V−1
(
f̃ (p,Π,Φ)− y

)
+
(
p − µpri

)ᵀ
Σ−1

pri

(
p − µpri

)]
.

(32)

2.3 Optimizing Hyperparameters

The basis functions φi (p, r) in Eq. (18) depend not only on p, but additionally
on the so-called hyperparameter, or nuisance parameter r, that can have a
strong impact on the quality of the interpolation. Determining for which r ∈ R
the interpolation gives the best results is in M.o.R. done using leave-one-out
cross-validation (LOOCV)[11] and [10], based on the following reasoning.

Let the matrix of grid points be Π ∈ Rk×m, and the corresponding matrix
of function values Φ ∈ Rk×n. Denote by Π(i) ∈ R(k−1)×m and Φ(i) ∈ R(k−1)×n

the respective matrices with the i-th row removed, and by pi and fi the entries
of the i-th row. We can then use the matrices Π(i) and Φ(i) to approximate the
function values for pi and calculate the difference to yi, this can be done for all
i = 1, . . . , k, and we can define a function that measures the accuracy of these
approximations:

l (r) =

k∑
i=1

‖f̃
(
r,pi,Π(i),Φ(i)

)
− fi‖2. (33)

The optimal hyperparameter r̂ is then found by minimizing the function in Eq.
(33). We use a particle-swarm optimization algorithm, see Ref. ([2]), that has
already been implemented in an R package[1].

2.4 Minimizing the χ2 Function

M.o.R. uses a hybrid optimization technique, that combines elements from stochas-
tic global optimization algorithms, and gradient-based methods [8] to deter-
mine the solution to Problem 3. We use a combination of R packages to mini-
mize the χ2 function, [1, 12]. We first apply the particle swarm optimization

9

with a limited number of iterations to find a good estimate for the global min-
imum and then use the preliminary best fit value as a starting point for the
gradient-based local optimization algorithm. Based on that value we then cal-
culate the covariance matrix using Eqs. (12) and (13).

2.5 Monte Carlo

In M.o.R. the Monte Carlo (MC) method is used to determine how systematic
errors influence the parametric estimates and their uncertainties. Systematic
errors might be due to inaccuracies and/or oversimplifications of the model
used to process the measurement data. However, one might be interested to
estimate the influence of those systematic errors, without including their cause
in the model, mostly due to limited computational and time resources.

Instead one can draw several, say ns, realizations of those systematic errors
by slightly perturbing the model and use these data sets as an input to the
optimization algorithm that uses the idealized model. For each realization i we
get an parameter estimate p̂i, based on the ns estimates we can then calculate
the mean parameter vector as

p =
1

ns

ns∑
i=1

p̂i (34)

and the sample covariance Q = (qjk) ∈ Rm×m with

qjk =
1

ns − 1

ns∑
i=1

(pij − pj)(pik − pk). (35)

2.6 Bootstrapping

Sometimes it is hard to estimate the measurement errors, i.e. the matrix V
in Problem 1 is unknown, and estimating the parametric uncertainties based on
Eqs. (12) and (13) is therefore not possible. In that case we can still estimate the
parametric uncertainties in a bit more computational expensive way by applying
bootstrapping[3], based on the following idea.

We first run the usual optimization algorithm to determine p̂. However, we
set V = In, the n × n dimensional unit matrix. We then calculate the residual
vector ε = f̃ (p̂) − y, create a permutation ε∗ of the residual vector, generate a
noisy realization of the input data by setting

y∗ = y + ε∗, (36)

and solve the optimization problem using y∗ as an input to obtain p̂. By repeat-
ing this ns times, we can again calculate the sample mean and covariance using
Eqs. (34) and (35).

10

3 Using M.o.R.

We now want to describe the usage of M.o.R., first we show which data format
is supported, and then show how to fit the data, and use the other features of
M.o.R.

3.1 Data Format

M.o.R. was designed to accept comma-separated values (CSV) files for all in-
volved matrices and vectors. Figure 2 presents an example of how the data
needs to be formatted in order to be able to be processed in the program.

.

Figure 2: Acceptable format for y (left), Π (middle), and Φ (right).

3.2 Standard Usage

Once the user made sure the data is in the right format, it needs to be up-
loaded individually, i.e. Π, Φ, and y into M.o.R using the respective Upload
and browse buttons. If no V−1 is specified, M.o.R. assumes an i.i.d. error model
with µ = 0, and σ defined in the Provide Sigma for V matrix field, see Fig. 3.
The user can also provide a specific V, or rather V−1. M.o.R. automatically
detects the dimensions of the data, and distinguishes two cases:

1) V−1 ∈ Rn: M.o.R. treats the entries as the diagonal entries of V−1

2) V−1 ∈ Rn×n: M.o.R. treats the entries as the matrix V−1

If prior knowledge shall be used, the user needs to provide µpri ∈ Rm, and
Σpri ∈ Rm×m. Once the data is specified M.o.R. prints out the dimensions of the

11

.

Figure 3: M.o.R. Input Data screen with completed data upload.

different vectors and matrices. Here k, n, and m correspond to the dimensions
as given in Problem 3, and nd corresponds to the number of data sets uploaded,
that is the number of columns of y. Unless the Monte Carlo analysis shall be
performed, M.o.R. sets nd = 1. The user then has to choose the type of analysis
they want to perform in the Type of Analysis field, and can then proceed to
the Fit screen, see Fig. 4. Note that if nd > 1, choosing the Single Data Set
or Bootstrapping options will only perform the regression for the first data set.
For more information about the different choices see Sections 3.3 and 3.5.

On the Fit screen, the user first needs to specify which type of radial basis
function to use for the interpolation in the Type of RBF field, see Section 2.2.
Afterwards the choice of the hyperparameter r needs to be specified, M.o.R.
can either be given a specific value for r to use, or it can determine the best
value, within user-defined boundaries, and with a maximum number of itera-
tions specified using the Upper Bound for r and Maximum # of Iterations
sliders. The value of r is set/optimized by pushing the Set/Optimize Hyperpa-
rameter r and Determine A button. The used value of r and the corresponding
l(r), see Eq. (33) are printed on screen. In the same step M.o.R. determines the
coefficient matrix A, see Eq. (22).

Once r and A are determined, the actual minimization of the χ2 function
can be performed. If not otherwise specified, M.o.R. sets the bounds for the pa-
rameters to be the min/max values of the grid points in Π. The user can change
these by unchecking the Default Bounds box and using the Range for Parame-
ter #i sliders to set the bounds for each of them parameters individually. Again,
the user can specify the maximum number of iterations, the latter individually
for the PSO and gradient-based parts using the Maximum # of PSO Iterations
and Maximum # of Iterations, respectively.

12

Figure 4: M.o.R. Fit screen after finished optimization.

Finally, the Diagnostics screen provides information about the fit in terms of
the reduced χ2 value, i.e. Eq. (4) divided by the degrees of freedom n−m, the
best fit parameters, and the estimated covariance matrix, based on Eqs. (12)
and (13). Furthermore M.o.R. provides a plot of the residuals and a plot of
the kernel density estimate (KDE) based on the residuals to enable the user to
check their assumptions about the initial error distribution. If the user wants
additional information, they can also use M.o.R. to provide a plot of the χ2

surface in dependence on two parameters. If the number of parameters m is
larger than 2, the remaining parameters will be fixed to their best fit values.
It is also possible to download the results for further studies, i.e. the best fit
parameters, the covariance matrix, and the matrix with the χ2 surface values if
it has been calculated.

Figure 5: M.o.R. Diagnostics screen with χ2 surface (lower right).

13

3.3 Monte Carlo Error Estimation

If the Monte Carlo option has been chosen, M.o.R. will determine the best fit
for each of the nd individual data sets. The fit screen shows the individual
estimated parameter values and the corresponding χ2 values. The residual
and KDE plots are for the final data set. The Diagnostics screen gives both the

Figure 6: M.o.R. Fit screen after finished Monte Carlo optimization.

sample covariance matrix based on the nd parametric estimates using Eqs. (34)
and (35), and the approximated covariance matrix based on Eqs. (12) and (13)
for the final data set. The χ2 surface, if plotted, is also based on the final data
set.

3.4 Bootstrapping

If the bootstrapping option has been chosen, M.o.R. will use the bootstrap algo-
rithm described in Section 2.6 to estimate the parametric uncertainties, based
on the number of samples ns specified by the user with the Number of Boot-
strap Samples slider. Once the calculations are finished, the Fit screen shows
the individual estimated parameter values and the corresponding χ2 values us-
ing the n-dimensional identity matrix as V−1. The residual and KDE plots are
for the final data set. The Diagnostics screen gives the sample covariance matrix
based on the ns parametric estimates using Eqs. (34) and (35). Theχ2 surface,
if plotted, is based on the final data set.

3.5 Saving the Results

The user is given the opportunity to save the results of the data analysis using
the Save Results dialogue. Here the user can choose whether they want to save
the best fit parameters, the residuals, the covariance matrix, or the values of the

14

Figure 7: M.o.R. Diagnostics screen after finished bootstrapping.

χ2 surface if it has been calculated for further investigations. All data are saved
as CSV files.

Acknowledgments

The authors would like to thank Gabriel Sarmanho for helping with the R spe-
cific questions.

References

[1] C. BENDTSEN., pso: Particle swarm optimization. https://CRAN.

R-project.org/package=pso, 2012. R package version 1.0.3.

[2] R. EBERHART AND J. KENNEDY, A new optimizer using particle swarm the-
ory, Proceedings of the Sixth International Symposium on Micro Machine
and Human Science, (1995).

[3] B. EFRON, Bootstrap Methods: Another Look at the Jackknife, Ann. Statist.,
7 (1979).

[4] R. FLETCHER, Practical methods of optimization, John Wiley & Sons, 2013.

[5] C. W. GROETSCH, Inverse problems: activities for undergraduates, Cam-
bridge University Press, 1999.

[6] M.-A. HENN, R. M. SILVER, J. S. VILLARRUBIA, N. F. ZHANG, H. ZHOU,
B. M. BARNES, B. MING, AND A. E. VLADÁR, Optimizing hybrid metrology:
rigorous implementation of bayesian and combined regression, Journal of
Micro/Nanolithography, MEMS, and MOEMS, 14 (2015).

[7] J. KAIPIO AND E. SOMERSALO, Statistical and Computational Inverse Prob-
lems, Springer Science & Business Media, Berlin, 2006.

15

https://CRAN.R-project.org/package=pso
https://CRAN.R-project.org/package=pso

[8] C. T. KELLEY, Iterative methods for optimization, SIAM Frontiers in Applied
Mathematics, (1999).

[9] D. LOWE, Multi-variable functional interpolation and adaptive networks,
Complex Systems.

[10] M. MONGILLO, Choosing basis functions and shape parameters for radial
basis function methods, SIAM Undergraduate Research Online, 4 (2011),
pp. 190–209.

[11] A. W. MOORE, Cross-validation for detecting and preventing overfitting,
School of Computer Science Carneigie Mellon University, (2001).

[12] J. C. NASH, R. VARADHAN, AND G. GROTHENDIECK, Package ’optimx’. ftp:
//cran.r-project.org/pub/R/web/packages/optimx/optimx.pdf. Ac-
cessed: 2017-06-19.

[13] A. TARANTOLA, Inverse problem theory and methods for model parameter
estimation, SIAM, 2005.

[14] A. N. TIKHONOV, On the stability of inverse problems, Dokl. Akad. Nauk
SSSR, 39 (1943).

[15] T. WEISE, Global optimization algorithms-theory and application, Self-
published, 2 (2009).

[16] N. F. ZHANG, R. M. SILVER, H. ZHOU, AND B. M. BARNES, Improving
optical measurement uncertainty with combined multitool metrology using a
Bayesian approach, Applied optics, 51 (2012).

[17] N. F. ZHANG, R. M. SILVER, H. ZHOU, AND B. M. BARNES, Use of Bayesian
Statistics to Improve Optical Measurement Uncertainty by Combined Multi-
Tool Metrology, Advances in Mathematical and Computational Tools in
Metrology and Testing X, (2015).

16

ftp://cran.r-project.org/pub/R/web/packages/optimx/optimx.pdf
ftp://cran.r-project.org/pub/R/web/packages/optimx/optimx.pdf

	Introduction
	Theoretical Background
	The Inverse Problem
	Interpolation
	Optimizing Hyperparameters
	Minimizing the 2 Function
	Monte Carlo
	Bootstrapping

	Using M.o.R.
	Data Format
	Standard Usage
	Monte Carlo Error Estimation
	Bootstrapping
	Saving the Results

